QJ8012xHx Series #### **Agency Recognitions** | Agency | Agency File Number | |--------|--------------------| | 71 | E71639* | * - L Package only #### **Main Features** | Symbol | Value | Unit | |----------------------|----------|------| | I _{T(RMS)} | 12 | А | | V_{DRM}/V_{RRM} | 800 | V | | I _{GT (Q1)} | 35 or 50 | mA | #### **Schematic Symbol** #### **Description** This 12A high temperature Alternistor TRIAC, offered in TO-220AB, TO-220 isolated and TO-263 package, has 150°C maximum junction temperature and 120A ITSM(60Hz). This series enables easier thermal management and higher surge handling capability in AC power control applications such as heater control, motor speed control, lighting controls, and static switching relays. Alternistor TRIAC operates in quadrants I, II, & III and offers high performance in applications requiring high commutation capability. #### **Features & Benefits** - Recognized to UL 1557 as an Electrically Isolated Semiconductor Devices - Glass passivated junctions - Surge capability up to 120 A - The L-package has an isolation rating of 2500V_{RMS} - Solid-state switching eliminates arcing or contact bounce that create voltage transients - No contacts to wear out from reaction of switching events - Restricted (or limited) RFI generation, depending on activation point sine wave - Requires only a small gate activation pulse in each half-cycle - RoHS-compliant #### **Applications** Excellent for AC switching and phase control applications such as heating, lighting, and motor speed controls. Typical applications are AC solid-state switches, light dimmers, power tools, lawn care equipment, home/brown goods and white goods appliances. Alternistor Triacs (no snubber required) are used in applications with extremely inductive loads requiring highest commutation performance. Internally constructed isolated packages are offered for ease of heat sinking with highest isolation voltage. # Absolute Maximum Ratings — Alternistor (3 Quadrants) | Symbol | Paramete | Value | Unit | | | |---------------------------|---|------------------------|------------------------|---|------| | | | QJxx12LHy | T _C = 120°C | | | | I _{T(RMS)} | I _{T(RMS)} RMS on-state current (full sine wave) | QJxx12RHy
QJxx12NHy | T _C = 132°C | 12 | А | | | Non repetitive surge peak on-state current | f = 50 Hz | t = 20 ms | 110 | A | | TSM | (full cycle, T_J initial = 25°C) | f = 60 Hz | t = 16.7 ms | 120 | A | | l²t | I²t Value for fusing | | $t_p = 8.3 \text{ ms}$ | 60 | A²s | | di/dt | Critical rate of rise of on-state current | f = 60 Hz | T _J = 150°C | 70 | A/µs | | I _{GTM} | Peak gate trigger current | t _p = 20 μs | T _J = 150°C | 4 | А | | P _{G(AV)} | Average gate power dissipation | | T _J = 150°C | 0.5 | W | | T _{stg} | Storage temperature range | | | -40 to 150 | °C | | T_{J} | Operating junction temperature range | | | -40 to 150 | °C | | $V_{\rm DSM}/V_{\rm RSM}$ | Peak non-repetitive blocking voltage | Pulse Width | n = 100µs | V _{DRM} /V _{RRM} +200 | V | Note: xx = voltage/10, y = sensitivity # Electrical Characteristics (T_j = 25°C, unless otherwise specified) — Alternistor Triac (3 Quadrants) | Symbol | Test Conditions | onditions Quadrant | | QJxx12xH4 | QJxx12H5 | Unit | |-----------------|---|--------------------|-------|-----------|----------|---------------------| | I _{GT} | $V_D = 12V R_L = 60 \Omega$ | 1 – 11 – 111 | MAX. | 35 | 50 | mA | | V _{GT} | $V_D = 12V R_L = 60 \Omega$ | 1 – 11 – 111 | MAX. | 1.3 | 1.3 | V | | V _{GD} | $V_D = V_{DRM} R_L = 3.3 \text{ k}\Omega T_J = 150^{\circ}\text{C}$ | 1 – 11 – 111 | MIN. | 0.2 | 0.2 | V | | I _H | I _T = 100mA | | MAX. | 40 | 50 | mA | | dv/dt | $V_D = V_{DRM}$ Gate Open $T_J = 150$ °C | | NAINI | 450 | 700 | \// _{1.10} | | av/at | $V_D = 67\% V_{DRM}$ Gate Open $T_J = 100$ °C | | MIN. | 600 | 1000 | - V/μs | | (dv/dt)c | (di/dt)c = 6.5 A/ms T _J = 150°C | | MIN. | 2 | 30 | V/µs | | t _{gt} | $I_{G} = 2 \times I_{GT} \text{ PW} = 15 \mu \text{s} I_{T} = 17.0 \text{ A(pk)}$ | | TYP. | 7 | 9 | μs | ### **Static Characteristics** | Symbol | Test Conditions | | | Value | Unit | |------------------|----------------------------------|------------------------|--------|-------|------| | V_{TM} | $I_{TM} = 17.0A t_p = 380 \mu s$ | | MAX. | 1.60 | V | | I _{DRM} | W - W /W | T _J = 25°C | MAX. | 10 | μΑ | | I _{RRM} | $V_D = V_{DRM} / V_{RRM}$ | T _J = 150°C | IVIAX. | 3 | mA | ## **Thermal Resistances** | Symbol | Parameter | | Value | Unit | |--------------------------------------|--------------------------|------------------------|--------|------| | $R_{\scriptscriptstyle{\theta(JC)}}$ | Junction to case (AC) | QJxx12RHy
QJxx12NHy | 1.2 | °C/W | | 0,00 | 600) | QJxx12LHy | ly 2.3 | | | | luration to ambient (AC) | QJxx12RHy | 45 | CCAA | | $R_{\theta(J-A)}$ | Junction to ambient (AC) | QJxx12LHy | 90 | °C/W | **Note:** xx = voltage/10, y = sensitivity ### **Figure 1: Definition of Quadrants** Note: Alternistors will not operate in QIV Figure 3: Normalized DC Holding Current vs. Junction Temperature Figure 5: Power Dissipation (Typical) vs. RMS On-State Current Figure 2: Normalized DC Gate Trigger Current for All Quadrants vs. Junction Temperature Figure 4: Normalized DC Gate Trigger Voltage for All Quadrants vs. Junction Temperature Figure 6: Maximum Allowable Case Temperature vs. On-State Current Figure 7: Maximum Allowable Ambient Temperature vs. On-State Current Figure 8: On-State Current vs. On-State Voltage (Typical) Figure 9: Surge Peak On-State Current vs. Number of Cycles Supply Frequency: 60Hz Sinusoidal Load: Resistive RMS On-State Current [I $_{\rm T(RMS)}$: Maximum] Rated Value at Specific Case Temperature #### Notes - Gate control may be lost during and immediately following surge current interval. - Overload may not be repeated until junction temperature has returned to steady-state rated value. #### **Soldering Parameters** | Reflow Cond | dition | Pb – Free assembly | | |--|--|--------------------|--| | | -Temperature Min (T _{s(min)}) | 150°C | | | Pre Heat | -Temperature Max (T _{s(max)}) | 200°C | | | | -Time (min to max) (t _s) | 60 – 180 secs | | | Average ramp up rate (Liquidus Temp) (T _L) to peak | | 5°C/second max | | | T _{S(max)} to T _L - | Ramp-up Rate | 5°C/second max | | | Reflow | - Temperature (T _L) (Liquidus) | 217°C | | | nellow | -Time (min to max) (t _s) | 60 - 150 seconds | | | Peak Temper | rature (T _P) | 260+0/-5 °C | | | Time within | 5°C of actual peak Temperature | 20 - 40 seconds | | | Ramp-down | Rate | 5°C/second max | | | Time 25°C to peak Temperature (T _p) | | 8 minutes Max. | | | Do not exce | ed | 280°C | | #### **Physical Specifications** | Terminal Finish 100% Matte Tin-plated | | | | |---------------------------------------|--|--|--| | Body Material | UL Recognized compound meeting flammability rating V-0 | | | | Terminal Material | Copper Alloy | | | ### **Design Considerations** Careful selection of the correct component for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Good design practice should limit the maximum continuous current through the main terminals to 75% of the component rating. Other ways to ensure long life for a power discrete semiconductor are proper heat sinking and selection of voltage ratings for worst case conditions. Overheating, overvoltage (including dv/dt), and surge currents are the main killers of semiconductors. Correct mounting, soldering, and forming of the leads also help protect against component damage. #### **Environmental Specifications** | Test | Specifications and Conditions | |---------------------------|--| | AC Blocking | MIL-STD-750, M-1040, Cond A Applied Peak AC voltage @ 125°C for 1008 hours | | Temperature Cycling | MIL-STD-750, M-1051,
100 cycles; -40°C to +150°C; 15-min dwell time | | Temperature/Humidity | EIA / JEDEC, JESD22-A101
1008 hours; 320V - DC: 85°C; 85%
rel humidity | | High Temp Storage | MIL-STD-750, M-1031,
1008 hours; 150°C | | Low-Temp Storage | 1008 hours; -40°C | | Resistance to Solder Heat | MIL-STD-750 Method 2031 | | Solderability | ANSI/J-STD-002, category 3, Test A | | Lead Bend | MIL-STD-750, M-2036 Cond E | # **Thyristors** ### Dimensions — TO-220AB (R-Package) — Non-Isolated Mounting Tab Common with Center Lead | Dimension | Inc | hes | Millin | neters | |-----------|-------|-------|--------|--------| | Dimension | Min | Max | Min | Max | | Α | 0.380 | 0.420 | 9.65 | 10.67 | | В | 0.105 | 0.115 | 2.67 | 2.92 | | С | 0.230 | 0.250 | 5.84 | 6.35 | | D | 0.590 | 0.620 | 14.99 | 15.75 | | E | 0.142 | 0.147 | 3.61 | 3.73 | | F | 0.110 | 0.130 | 2.79 | 3.30 | | G | 0.540 | 0.575 | 13.72 | 14.61 | | Н | 0.025 | 0.035 | 0.64 | 0.89 | | J | 0.195 | 0.205 | 4.95 | 5.21 | | K | 0.095 | 0.105 | 2.41 | 2.67 | | L | 0.060 | 0.075 | 1.52 | 1.91 | | M | 0.085 | 0.095 | 2.16 | 2.41 | | N | 0.018 | 0.024 | 0.46 | 0.61 | | 0 | 0.178 | 0.188 | 4.52 | 4.78 | | P | 0.045 | 0.060 | 1.14 | 1.52 | | R | 0.038 | 0.048 | 0.97 | 1.22 | # Dimensions — TO-220AB (L-Package) — Isolated Mounting Tab | Dimension | Inc | hes | Millin | neters | |-----------|-------|-------|--------|--------| | Dimension | Min | Max | Min | Max | | Α | 0.380 | 0.420 | 9.65 | 10.67 | | В | 0.105 | 0.115 | 2.67 | 2.92 | | С | 0.230 | 0.250 | 5.84 | 6.35 | | D | 0.590 | 0.620 | 14.99 | 15.75 | | E | 0.142 | 0.147 | 3.61 | 3.73 | | F | 0.110 | 0.130 | 2.79 | 3.30 | | G | 0.540 | 0.575 | 13.72 | 14.61 | | Н | 0.025 | 0.035 | 0.64 | 0.89 | | J | 0.195 | 0.205 | 4.95 | 5.21 | | K | 0.095 | 0.105 | 2.41 | 2.67 | | L | 0.060 | 0.075 | 1.52 | 1.91 | | M | 0.085 | 0.095 | 2.16 | 2.41 | | N | 0.018 | 0.024 | 0.46 | 0.61 | | 0 | 0.178 | 0.188 | 4.52 | 4.78 | | Р | 0.045 | 0.060 | 1.14 | 1.52 | | R | 0.038 | 0.048 | 0.97 | 1.22 | # Dimensions — TO-263AB (N-Package) — D²Pak Surface Mount | Dimension | Inches | | Millin | neters | |-----------|--------|-------|--------|--------| | Dimension | Min | Max | Min | Max | | Α | 0.360 | 0.370 | 9.14 | 9.40 | | В | 0.380 | 0.420 | 9.65 | 10.67 | | С | 0.178 | 0.188 | 4.52 | 4.78 | | D | 0.025 | 0.035 | 0.64 | 0.89 | | E | 0.045 | 0.060 | 1.14 | 1.52 | | F | 0.060 | 0.075 | 1.52 | 1.91 | | G | 0.095 | 0.105 | 2.41 | 2.67 | | Н | 0.092 | 0.102 | 2.34 | 2.59 | | J | 0.018 | 0.024 | 0.46 | 0.61 | | K | 0.090 | 0.110 | 2.29 | 2.79 | | S | 0.590 | 0.625 | 14.99 | 15.88 | | V | 0.035 | 0.045 | 0.89 | 1.14 | | U | 0.002 | 0.010 | 0.05 | 0.25 | | w | 0.040 | 0.070 | 1.02 | 1.78 | # **Product Selector** [8.89] .350 | | Part Number | Gate Sensitivity Quadrants | | | |--|-------------|----------------------------|-------------------|---------------| | | | 1-11-111 | Туре | Package | | | QJxx12LH4 | 35 mA | Alternistor Triac | TO-220L | | | QJxx12RH4 | 35 mA | Alternistor Triac | TO-220R | | | QJxx12NH4 | 35 mA | Alternistor Triac | TO-263 D²-PAK | | | QJxx12LH5 | 50 mA | Alternistor Triac | TO-220L | | | QJxx12RH5 | 50 mA | Alternistor Triac | TO-220R | | | QJxx12NH5 | 50 mA | Alternistor Triac | TO-263 D²-PAK | # **Packing Options** | Part Number | Marking | Weight | Packing Mode | Base Quantity | |-------------|-----------|--------|------------------|--------------------| | QJxx12RHyTP | QJxx12RHy | 2.2 g | Tube Pack | 1000 (50 per tube) | | QJxx12LHyTP | QJxx12LHy | 2.2 g | Tube Pack | 1000 (50 per tube) | | QJxx12NHyTP | QJxx12NHy | 1.6 g | Tube Pack | 1000 (50 per tube) | | QJxx12NHyRP | QJxx12NHy | 1.6 g | Embossed Carrier | 500 | **Note:** xx = voltage/10; y = Sensitivity #### TO-263 Embossed Carrier Reel Pack (RP) #### Meets all EIA-481-2 Standards #### **Part Numbering System** #### **Part Marking System** TO-220 AB - (L and R Package) TO-263 AB - (N Package) Date Code Marking Y:Year Code M: Month Code XXX: Lot Trace Code **Disclaimer Notice** - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at http://www.littelfuse.com/disclaimer-electronics.