
Expertise Applied | Answers Delivered

Electric Vehicle Wireless Charging Solutions

Users must independently evaluate the suitability of and test each product selected for their own specific applications. It is the User's sole responsibility to determine fitness for a particular system or use based on their own performance criteria, conditions, specific application, compatibility with other parts, and environmental conditions. Users must independently provide appropriate design and operating safeguards to minimize any risks associated with their applications and products. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at Littelfuse.com/disclaimer-electronics.

Wireless charging overview

Global wireless EV charging market growing at a CAGR of ~77%

Market trends and drivers

A seamless charging experience saves time and effort for fleet managers and electric vehicle (EV) owners, making it an ideal solution for private fleet or public charging stations.

The charging process is safer since there are no exposed connectors or cables, minimizing the risk of physical damage and electrical hazards. This ensures much more durable and long-lasting infrastructure.

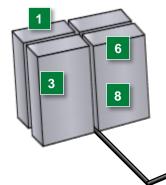
With the advancement of self-driving technology, autonomous EVs are becoming a reality. Wireless EV chargers make the charging experience more convenient and user-friendly.

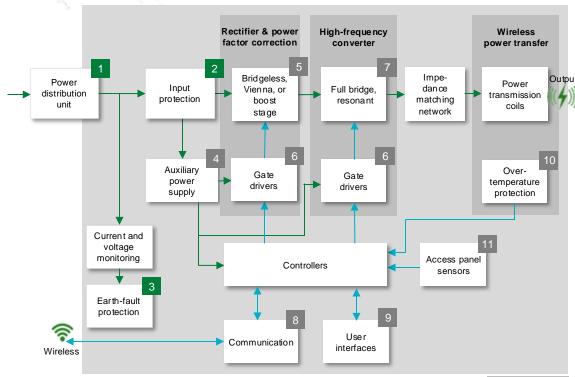
The total addressable market (TAM) for industrial chargers (automated guided vehicles (AGVs), autonomous mobile robots (AMRs), and industrial trucks) is valued at \$12.5 billion.

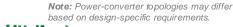
Dynamic-charging wireless electric roads

Sources: Guidehouse Report 2021

Wireless charging system



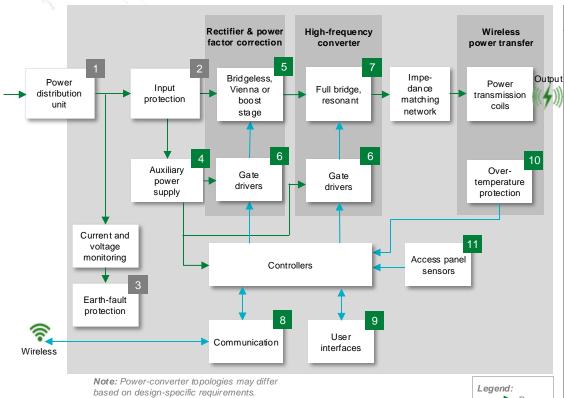



Littelfuse, Inc. © 2024 4

Wireless charger functional block diagram

	Technology	Product series	
	AC Fuse (Cabinet Level)	JLLS, JLLN, KLKD	
t '	Surge Protection	SPD Type 2	
	HC Fuse (Primary protection)	<u>606</u>	
2	Fast-Acting Fuse (Secondary protection)	314, 324	
_	MOV	TMOV, UltraMOV	
	GDT	<u>CG2, CG3</u>	
	TVS Diode	High Voltage AK, LTKAK	
3	Residual Current Monitor	RCM20-01, RCMP20-01, RCMP20-03	
	Ground Fault Relay	SE-704, SE-CS30	

Note: Other Littelfuse solutions may be suitable depending on design-specific requirements.



Features and benefits of Littelfuse solutions

	Technology	Function in application	Product series	Benefits	Features
1	AC Fuse (Cabinet Level)	Provides fast-acting overload and short-circuit protection	JLLS, JLLN, KLKD	Reduces damage to equipment caused by heating and magnetic effects of short circuit currents	Extremely current limiting; small footprint 200 kA interrupting rating
	Surge protection	Protects from power fluctuations or surges	SPD Type 2	Withstands high-energy transients to prevent disruption, downtime, and degradation	20 kA nominal interrupting rating and 50 kA maximum interrupting rating
	HC Fuse (Primary protection)	Primary overcurrent protection of EV equipment	606	Enables robust yet compact design; can operate in extreme temperature environments	Rated voltage @ 500 VAC; 40 A to 63 A rating available; small footprint
2	Fast-Acting Fuse (Secondary protection)			Reduces customer qualification time by complying with third-party safety standards such as UL/IEC	In accordance with UL Standard 248-14; available in cartridge and axial lead format
	MOV	GDT in series with TMOV protects the	TMOV, UltraMOV	Reduces customer qualification time by complying with third-party safety standards such as UL/IEC	High energy absorption capability: 40–530 J (2 ms); integrated thermal protection
	GDT	auxiliary power supply unit from voltage transients induced by lightning	<u>CG2, CG3</u>	Small form factor allows for compact system design	High energy absorption capability; small form factor; low leakage current
	TVS Diode	Protects power line from transient surge	High Voltage AK, LTKAK	Good clamping and fast response time for high-energy transient protection	High power TVS 8/20 µs rating from 1 kA to 20 kA in axial-lead or SMT form factor
3	Residual Current Monitor	Detects DC and AC residual currents to the earth in 50 Hz / 60 Hz AC installations	RCM20-01, RCMP20-01, RCMP20-03	Compact solution designed to be panel mounted or PCB mounted	Operates from a 12-24 VDC supply; helps with IEC61980 compliance
	Current Transformer	Offers ground-fault detection	<u>SE-704</u>	Specifically designed for low-level detection; flux conditioner is included to prevent saturation	Turns ratio 600:1 and current rating 30:0.05 A
	AC Earth-Fault Relay	and protection	SE-CS30	No calibration; low-level protection and system coordination; low maintenance	Microprocessor-based; adjustable pickup (10 mA-5 A); adjustable time delay (30 ms-2 s)

Wireless charger functional block diagram

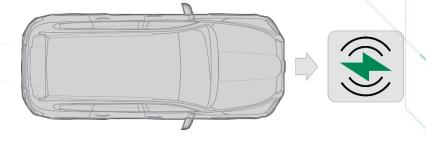
	Technology	Product series
4	Schottky Diode	DST, DSA, DSB
4	Si MOSFET	<u>Polar</u> ™
	Rectifier Diode	<u>DMA</u>
	Rectifier Module	MDD, VUO, MDNA
5	SiC/Si MOSFET OR Discrete IGBT	LSIC1MQ/ X2-Class, SMPD OR XPT
	Diode	LSIC2SD, DHG, DSEI
	High-Speed Fuse	PSR, <u>L50QS</u> , <u>L75QS</u>
	Temperature Sensor	<u>USUR1000</u>
6	Gate Driver	<u>IXDN609, IX4352NE</u>
	SiC MOSFET	LSIC1MO, MCL10P1200LB
7	Diode	LSIC2SD, DHG, DSEI
	Temperature Sensor	USUR1000, KC
8	TVS Diode Array	AQ24CAN, SM24CANx
9	TVS Diode Array, Polymer ESD	<u>SP1026,</u> XGD10402
10	RTD	PPG, USW, Glass Coated
11	Reed Switch	<u>59060, 59045</u>

Littelfuse

Expertise Applied | Answers Delivered

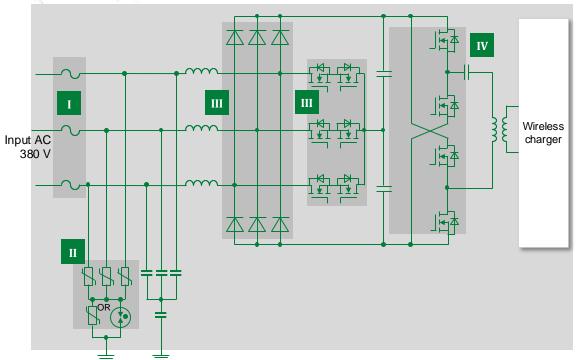
Power Data

Littelfuse, Inc. © 2024

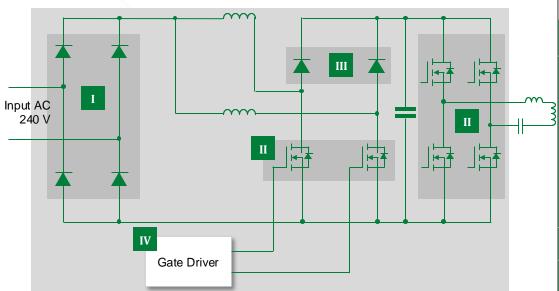

Features and benefits of Littelfuse solutions

	Technology	Function in application	Product series	Benefits	Features
	Schottky Diode	Provides output rectification in auxiliary power supply	DST, DSA, DSB	Improves power supply unit efficiency	Low forward voltage drop; high-frequency operation; high junction temperature
4	Si MOSFET	High-speed switching	<u>Polar™</u>	Easy to mount; space saving; high power density	Low RDS(on) and Qg; avalanche rated; international standard packages; low package inductance
	Rectifier Diode	Converts AC line voltage supplied to the drive to DC	DMA	Small footprint; multiple package options (high voltage, isolated, and standard packages)	Low leakage current and forward voltage drop; improved thermal behavior; high robustness
	Rectifier Module Converts AC line voltage supplied to the drive to DC		MDD, VUO, MDNA	Compact design; better electrical isolations	Package with DCB ceramic; very low forward voltage drop and low leakage current
5	SiC/Si MOSFET OR Discrete IGBT	Boosts converter for high-frequency switching in the PFC circuit	LSIC1MQ/ X2-Class, SMPD OR XPT	Optimized for high-frequency applications	Ultra-low output capacitance and on-resistance
ĺ	Diode		LSIC2SD, DHG, DSEI	Reduces switching losses; increases efficiency	High surge capability; negligible IRR; Tj 175 °C
	High-Speed Fuse	Protects semiconductor devices	PSR, L50QS, L75QS	Lower I ² t performance allows for quick response to protect devices from higher heat energy	550–1300 Vac, 500–1000 Vpc, 40–2000 A
	Temperature Sensor	Semiconductor temperature measurement	<u>USUR1000</u>	Rapid thermal response and long-time reliability	UL recognized; wide temperature range: -40 °C to 125 °C
6	Gate Driver	Controls the switching MOSFETs/IGBTs	IXDN609, IX4352NE	Quick turn-on and turn-off of MOSFETs/IGBTs; eliminates the need for separate supply	9 A peak current; low propagation delay time; low output impedance
	SIC MOSFET	High-frequency switching and rectification	LSIC1MO, MCL10P1200LB	Optimized for high-frequency applications	Ultra-low output capacitance and on-resistance
7	Diode		LSIC2SD, DHG, DSEI	Reduces switching losses; increases efficiency	High surge capability; negligible IRR; Tj 175 °C
	Temperature Sensor	Semiconductor temperature measurement	<u>USUR1000, KC</u>	Rapid thermal response and long-time reliability	UL recognized; wide temperature range: -40 °C to 125 °C
8	TVS Diode Array	Protects CAN bus from ESD, EFT, and voltage transient	AQ24CAN, SM24CANx	Ensures reliability of the equipment without performance degradation	Meets ESD protection levels specified under IEC 61000-4-2 and ISO10605; low leakage current and clamping voltage
9	TVS Diode Array Polymer ESD	Protects ICs from ESD through display	<u>SP1026,</u> <u>XGD10402</u>	Smaller form factor and multiline protection enables ease of design	Low capacitance of 1.0 pF per I/O
10	RTD	Temperature sensing	PPG, USW, Glass Coated	Offers high accuracy, high reliability, and excellent stability at high temperatures	Linear relationship between temp and resistance; temperature range -50 °C to +500 °C
11	Reed Switch	Charging plus position sensing	<u>59060, 59045</u>	Robust design; well suited for usage in high-moisture and contaminated environment	Hermetically sealed; magnetically operated contacts; certified for use in NA and Europe

Expertise Applied | Answers Delivered

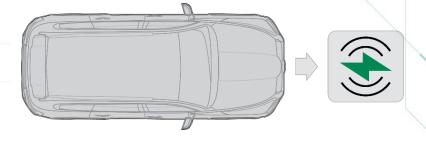

Expertise Applied | Answers Delivered

Wireless charging schematic for power conversion


Wireless charger power converter

	Technology	Product series		
I	Fuse	606, 505, 607		
	MOV (Secondary protection)	TMOV, UltraMOV, SM10		
П	GDT (Secondary protection)	<u>CG2, CG3</u>		
	SIDACtor® + MOV (Secondary protection)	Pxxx0FNL + UltraMOV		
	Diode	DSEPxx, DSEI		
Ш	MOSFET	X2-Class, X3-Class		
	Gate Driver	<u>IXD_6xx,</u> <u>IX4352NE</u>		
	Discrete Si/SiC MOSFET/SMPD	HiPerFET™, MCL10P1200LB		
IV		IVD 0		
	Gate Driver	JXD_6xx, JX4352NE		

Wireless charging system: Interleaved PFC circuit


	0 0			
	Technology	Product series		
1	Bridge Rectifier	DMA200X1600NA, MDNA240U2200ED		
	Si MOSFET	X2-Class, X3-Class, SMPD		
3	SIC MOSFET	LSIC1MO		
I	IGBT	XPT™, MIXA, MIXG		
	TVS Diode	<u>TPSMx</u>		
	Temperature Sensor	setP™, USUR1000, Epoxy Coated Thermistor		
I	II Diode	LSIC2SD, SONIC-FRD™, FRED DSE		
ľ	Gate Driver	IXDN604, IX4340N, IX332B, IXDN609, IX2113, IX332B		

^{*} Please contact Littelfuse Sales for more details.

Expertise Applied | Answers Delivered

Safety standards for EV wireless charging

Select standards for EV charging equipment

Standard	Title	General Scope	Region
IEC 61851	Electric Vehicle Conductive Charging System	Various parts of this standard cover general requirements, along with AC chargers and DC chargers specifically.	Global
IEC 62196	Plugs, Socket Outlets, Vehicle Connectors, and Vehicle Inlets- Conductive Charging of Electric Vehicles	Standards for charging plugs, sockets, and connectors.	Global
IEC 61980	Electric Vehicle Wireless Power Transfer (WPT) Systems	Various parts of this standard cover general requirements for wireless charging systems, along with specific technology-based requirements.	Global
GB/T 18487	Electric Vehicle Conductive Charging System	Various parts of this standard cover general requirements, along with AC chargers and DC chargers specifically.	China
GB/T 20234	Connection Set for Conductive Charging of Electric Vehicles	Standards for charging plugs in China.	China
JIS TS D 0007	Basic Function of Quick Charger for the Electric Vehicle	Standard for CHAdeMO (DC) chargers in Japan.	
SAE J1772*	Electric Vehicle and Plug-In Hybrid Electric Vehicle Conductive Charge Coupler	Physical, electrical, functional, and performance standard for charging plugs in North America.	
SAE J2954*	Wireless Power Transfer for Light-Duty Plug-In/Electric Vehicles and Alignment Methodology	Interoperability, electromagnetic compatibility, EMF, minimum performance, and safety and testing for wireless chargers in North America.	
UL 2594	Standard for Electric Vehicle Supply Equipment	Safety standard for AC chargers in North America. Tri-national standard for the United States, Canada, and Mexico (known as CAN/CSA C22.2 No. 280 in Canada and NMX-J-677-ANCE in Mexico).	
UL 2202	Standard for Electric Vehicle (EV) Charging System Equipment	Safety standard for DC chargers in the United States.	U.S.

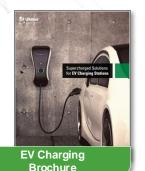
^{*} J1772TM and J2954TM are registered trademarks of SAE International.

IEC 61980-3 and SAE J2594 follow the same power classifications

	WPT* Power Class			
	WPT1	WPT2	WPT3	WPT4
Maximum input	3.7 kVA	7.7 kVA	11.1 kVA	22 kVA
Minimum target efficiency at nominal x,y alignment	> 85%	> 85%	> 85%	TBD next phase
Minimum target efficiency at offset position	> 80%	> 80%	> 80%	TBD next phase

Source: SAE J2594

IEC 61980-3 follows the same power classification.


*WPT = Wireless Power Transfer

To address the emergence of high-power pilot projects far above 22 kW, new standards for high-power wireless charger are under development.

Additional information can be found at Littelfuse.com

Explore the world of Littelfuse products and applications with ecatalogs (ecatalogs littelfuse com)

C&K Automotive Switch Flyer

Click on the images for more information

Local resources supporting our global customers

Partner for tomorrow's electronic systems

Safety

Broad Product Portfolio

An industrial technology manufacturing company empowering a sustainable, connected, and safer world

Application Expertise

Our engineers partner directly with customers to help speed up product design and meet their unique needs

Global Customer Service

Our global customer service team is with you to anticipate your needs and ensure a seamless experience

Testing Capabilities

We help customers get products to market faster, we offer certification testing to global regulatory standards

Compliance & Regulatory

We help customers in the design process to account for requirements set by global regulatory authorities

Global Manufacturing

High-volume manufacturing that is committed to the highest quality standards

This document is provided by Littelfuse, Inc. ("Littelfuse") for informational and guideline purposes only. Littelfuse assumes no liability for errors or omissions in this document or for any of the information contained herein. Information is provided on an "as is" and "with all faults" basis for evaluation purposes only. Applications described are for illustrative purposes only, and Littelfuse makes no representation that such applications will be suitable for the customer's specific use without further testing or modification. Littelfuse disclaims all warranties, whether express, implied, or statutory, including but not limited to the implied warranties of merchantability and fitness for a particular purpose and non-infringement. It is the customer's sole responsibility to determine suitability for a particular system or use based on their own performance criteria, conditions, specific application, compatibility with other components, and environmental conditions. Customers must independently provide appropriate design and operating safeguards to minimize any risks associated with their applications and products. Read complete Disclaimer Notice at: www.littelfuse.com/disclaimer-electronics.

Expertise Applied | Answers Delivered

Littelfuse.com