# Current Sensor CH1B02xB



#### Description

Littelfuse CH1B02xB current sensor is an open-loop Hall Effect device which provides a ratiometric output signal proportional to the magnetic flux density generated by a C-core concentrator. The sensor is offered in three configurations: standard connector, standard connector with cable retainer, and with CPA equipped connector.

#### Typical Application Diagram



#### **Output Characteristics**



#### **Features**

- Analog ratiometric output
- +5V DC unipolar power supply
- Operating temp. range: -40°C ... +125°C
- Open-loop Hall effect
- Single or dual channel output
- ASIL-QM
- Current measurement: up to ±1500A

#### Applications

- Battery Management system
- DC/DC Converter
- Power Distribution Unit
- DC Link

#### **Benefits**

- High accuracy, non-intrusive solution
- Low thermal offset drift
- Low thermal sensitivity drift

#### **Mechanical Characteristics**

- Case Material: PBT-GF30, UL94-V0
- Mass: 60.5 g ± 5%
- Busbar: Cu-ETP
- Protection degree: IP4X (IEC 60529)

#### Mating Connector

- CH1B020B / CH1B021B
  Molex DuraClik 5-way info pg.3-4
- CH1B022B

Tyco 4-way with CPA - info pg.5



## Littelfuse Current Sensor P/N Convention



#### **Product Variants**

## **Current Range Definition**

Littelfuse offers customized calibration ranges.

| Part Name | Config            | Ref. Image |
|-----------|-------------------|------------|
| CH1B020B  | Standard          |            |
| CH1B021B  | Cable<br>Retainer |            |
| CH1B022B  | CPA<br>Connector  |            |

#### Naming Examples:

| Type Name         | Current Range<br>Chanel 1 | Current Range<br>Chanel 2 |
|-------------------|---------------------------|---------------------------|
| CH1B02xB-S04A-Q   | ±400 A                    | N/A                       |
| CH1B02xB-S15A-Q   | ±1500 A                   | N/A                       |
| CH1B02xB-D0110A-Q | ±100 A                    | ±1000 A                   |
| CH1B02xB-D0215A-Q | ±200 A                    | ±1500 A                   |
| CH1B02xB -R08A-Q  | ±800 A                    | ±800 A                    |
| CH1B02xB -R15A-Q  | ±1500 A                   | ±1500 A                   |

The Littelfuse CH1B02xB family includes variants with digital output, +12VDC power supply and ASIL rated current measurement. Please refer to CH1B02xB-SxxL-B for details.





#### Current Sensor Dimensions (in mm)

#### CH1B020B



#### Remark

 $V_{out} > V_o$ , when  $I_p$  flows in the positive direction (see current direction arrow on drawing).

## Mating Connector

- Molex DuraClik 5-Way ISL Version
- Housing 5W, Black: 5601230501
- Retainer 5W Gray: 5601250500
- Terminal: 5601240101

#### Pinout

| Pin No. | Signal   | Description      |
|---------|----------|------------------|
| 1       | VCC      | +5V Power supply |
| 2       | OUTPUT 1 | Channel 1 OUT    |
| 3       | GND      | Ground           |
| 4       | OUTPUT 2 | Channel 2 OUT    |
| 5       | NO CONN  | Not Connected    |



#### Current Sensor Dimensions (in mm)

## CH1B021B



#### Remark

 $V_{out} > V_o$ , when  $I_p$  flows in the positive direction (see current direction arrow on drawing).

#### Mating Connector

- Molex DuraClik 5-Way ISL Version
- Housing 5W, Black: 5601230501
- Retainer 5W Gray: 5601250500
- Terminal: 5601240101

#### Pinout

| Pin No. | Signal   | Description      |
|---------|----------|------------------|
| 1       | VCC      | +5V Power supply |
| 2       | OUTPUT 1 | Channel 1 OUT    |
| 3       | GND      | Ground           |
| 4       | OUTPUT 2 | Channel 2 OUT    |
| 5       | NO CONN  | Not Connected    |



## Current Sensor Dimensions (in mm)

#### CH1B022B



#### Remark

 $V_{out} > V_o$ , when  $I_p$  flows in the positive direction (see current direction arrow on drawing).

#### Mating Connector

- TE 4-Way Generation Y
- Housing with CPA: 2035360-2
- Terminal: 1924955-1

#### Pinout

| Pin No. | Signal   | Description      |
|---------|----------|------------------|
| 1       | VCC      | +5V Power supply |
| 2       | OUTPUT 1 | Channel 1 OUT    |
| 3       | OUTPUT 2 | Channel 2 OUT    |
| 4       | GND      | Ground           |



| Parameter                   | Symbol            | Min  | Тур.  | Max  | Units | Comments              |  |  |
|-----------------------------|-------------------|------|-------|------|-------|-----------------------|--|--|
| Maximum Supply Voltage      | U <sub>CMAX</sub> | -0.3 |       | 10   | V     |                       |  |  |
| Maximum Output Current      | I <sub>CMAX</sub> | -10  |       | 10   | mA    |                       |  |  |
| Ambient Storage Temperature | $T_{ST}$          | -40  |       | +125 | °C    |                       |  |  |
| Insulation Resistance       | R <sub>INS</sub>  | 500  |       |      | MΩ    | 500V DC, 60s          |  |  |
| Dielectric voltage          | $I_{LEAK}$        |      |       | 1    | mA    | 2.5 kV AC, 50Hz, 1min |  |  |
| Creepage distance           | D <sub>CREE</sub> |      | 12.21 |      | mm    |                       |  |  |
| Clearance                   | D <sub>CLEA</sub> | 12   |       | mm   |       |                       |  |  |
| Comparative tracking index  | CTI               |      | 0 PLC |      | -     | UL746A                |  |  |

### Absolute Maximum Ratings (non-operating)

## **Mechanical Product Properties**

| Parameter          | Symbol | Level | Standard  | Comments |
|--------------------|--------|-------|-----------|----------|
| Flammability Class |        | V0    | UL94      |          |
| Protection Degree  |        | IP 4X | IEC 60529 |          |



## Common Characteristics in Normal Range

| Parameter                        | Symbol            | Min              | Тур.                             | Max                     | Units | Comments                                      |
|----------------------------------|-------------------|------------------|----------------------------------|-------------------------|-------|-----------------------------------------------|
| Supply Voltage                   | U <sub>C</sub>    | 4.75             | 5                                | 5.25                    | V     |                                               |
| Current Consumption              | I <sub>C</sub>    |                  | 11                               | 15                      | mA    | Single channel only                           |
| Current Consumption              | I <sub>C</sub>    |                  | 22                               | 30                      | mA    | w/ Dual or Redundant channel                  |
| Operating Ambient<br>Temperature | $T_A$             | -40              |                                  | +1251                   | °C    |                                               |
| Output Voltage                   | $V_{out}$         | $V_{out} = (U_c$ | $(V_0 - V_0) \times (V_0 - V_0)$ | $+ I_p \times S_{th}$ ) | V     |                                               |
| Output Offset Voltage            | $V_o$             |                  | 2.5                              |                         | V     | $U_C = 5 \forall$ , $I_p = 0 A$               |
| Clamping Voltage Lower           | $V_{CL}$          |                  | 0.3                              |                         | V     | $U_{C} = 5$ V, $T_{A} = 25$ °C                |
| Clamping Voltage Upper           | V <sub>CU</sub>   |                  | 4.7                              |                         | V     | $U_{C} = 5$ V, $T_{A} = 25$ °C                |
| Power-on Time                    | $t_{po}$          |                  |                                  | 1                       | ms    |                                               |
| Response Time                    | t <sub>r</sub>    |                  |                                  | 15                      | us    |                                               |
| Supply Capacitance               | C <sub>SUP</sub>  | 47               | 100                              |                         | nF    | Capacitors need to be located near supply pin |
| Load Capacitance                 | $C_L$             |                  | 2.2                              |                         | nF    |                                               |
| Load Resistance                  | $R_L$             |                  | 25                               |                         | kΩ    |                                               |
| Linearity Error                  | $\mathcal{E}_L$   |                  | ±0.8                             |                         | %FS   | $U_c = 5$ V, over temp                        |
| Offset Error                     | $\mathcal{E}_{o}$ |                  | ±15                              |                         | mV    | $U_{C} = 5V, T_{A} = 25^{\circ}C, I_{A} = 0A$ |
| Sensitivity Error                | $\mathcal{E}_{S}$ |                  | ±1                               |                         | %     | $U_c = 5$ V, over temp                        |

<sup>&</sup>lt;sup>1</sup> Practical operating ambient temperature depending on RMS current profile. Maximum permissible busbar surface temperature: ≤ 150°C.



#### CH1B02xB

Littelfuse offers customized calibrations.

Performance data below is applicable for a ±100A calibration.

| Parameter       | Symbol   | Min  | Тур. | Max  | Units | Comments       |
|-----------------|----------|------|------|------|-------|----------------|
| Primary Current | $I_p$    | -100 |      | +100 | А     |                |
| Sensitivity     | $S_{th}$ |      | 20.0 |      | mV/A  | $U_C = 5 \vee$ |

#### **Total Error**



| Primary Current $\pm I_P$ | Total Erro | or @25°C | Total Erro | r@Trange |
|---------------------------|------------|----------|------------|----------|
| А                         | %          | А        | %          | А        |
| +100 A                    | ±1.5 %     | ±1.5 A   | ±2.5 %     | ±2.5 A   |
| 0                         | ±0.75 %    | ±0.75 A  | ±1.0 %     | ±1.0 A   |
| -100 A                    | ±1.5 %     | ±1.5 A   | ±2.5 %     | ±2.5 A   |

Error in current (A) = Total Error  $\% * I_p$ 



#### CH1B02xB

Littelfuse offers customized calibrations.

Performance data below is applicable for a  $\pm 1500A$  calibration.

| Parameter       | Symbol   | Min   | Тур. | Max   | Units | Comments       |
|-----------------|----------|-------|------|-------|-------|----------------|
| Primary Current | $I_p$    | -1500 |      | +1500 | А     |                |
| Sensitivity     | $S_{th}$ |       | 1.33 |       | mV/A  | $U_c = 5 \vee$ |

## **Total Error**



| Primary Current $\pm I_P$ | Total Erro | or @25°C | Total Erro | r @Trange |
|---------------------------|------------|----------|------------|-----------|
| А                         | %          | А        | %          | А         |
| +1500 A                   | ±2.00 %    | ±30.00 A | ±3.0 %     | ±45.0 A   |
| 0                         | ±0.75 %    | ±11.25 A | ±1.0 %     | ±15.0 A   |
| -1500 A                   | ±2.00 %    | ±30.00 A | ±3.0 %     | ±45.0 A   |



Error in current (A) = Total Error  $\% * I_p$ 

## Continuous Current Performance (Busbar Heat Rise)



#### **Test Conditions:**

Ambient temperature: 65 °C, without cooling

Temperature monitoring: Record 1 data point per second. Test stopped when Temperature is stabilized at 150°C.





### **Recommendations for Use**

#### Setup Recommendation

Mounting and spacing recommendations are common for all component family members listed in this datasheet. Example shown is CH1B022B / CH1B028B.



#### Handling

- Handling of sensors should be minimized by maintaining parts within packaging until point of assembly.
- Contact with sensor terminals should be avoided.
- To avoid potential damage, adherence to ESD handling best practices is recommended.
- Dropped parts should be scrapped regardless of evidence of external damage.



## Validation Test Specification

| Group / Test                                         | Reference                                                                 | Test Condition                                                                                                                                                                                 |  |
|------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Environmental                                        |                                                                           |                                                                                                                                                                                                |  |
| Low Temperature Operation                            | ISO 16750-4                                                               | 24h; @-40 °C, power supply(continuous monitoring: offset (Vout and Vcc) at 1s intervals, zero primary current                                                                                  |  |
| High Temperature Operating Endurance<br>(HTOE)       | ISO 16750-4                                                               | 96 h; power supply continuous monitoring: offset (Vout and Vcc), at 30ms intervals @ 125 °C, zero primary current                                                                              |  |
| Temperature Step Test                                | ISO 16750-4:<br>2010 Section 5.2                                          | 20°C -> Tmin -> Tmax -> 20°C. Temperature step: 5 °C. Dwell time: TBD. Check DUT functionality at Umin, Unom, Umax at each temperature step.                                                   |  |
| High Temperature / High Humidity<br>Endurance (HTHE) | IEC 60068-2-78                                                            | 1000h, 85°C / 85% RH, power supplied (continuous monitoring Vcc) at 30ms intervals, zero primary current.<br>Intermediate functional test at room temp at 500hrs.                              |  |
| Powered Thermal Cycle Endurance                      | ISO16750-4 §5.3.1<br>EN 60068-2-14, test Nb                               | 125 cycles. 1000 h. DUT powered on, continous monitoring<br>Vout and Vcc at 30ms intervals.<br>Intermediate functional test at room temp at 500hrs.                                            |  |
| Thermal Shock                                        | ISO16750-4 §5.3.2<br>EN 60068-2-14                                        | 1000 h, −40 °C (30 min soak) / 125 °C (30 min soak), shift time<br>≤ 30s, 1000 cycles, with connectors installed.<br>Intermediate functional test at room temp at 500hrs.                      |  |
| Composite Temperature /Humidity<br>Cyclic            | ISO 16750-4 §5.6.2.3<br>IEC 60068-2-38                                    | 10 cycles. Total duration 240h. Temperature: +65°C.<br>DUT monitoring at 30ms intervals.                                                                                                       |  |
| Dewing Test                                          | ISO 16750-4:2010<br>Section 5.6.2.4 Test 3                                | 5 cycles. Total duration 30 hours. Temperature: +80°C.<br>DUT powered on, continous monitoring of Vout and Vcc at<br>30ms intervals.                                                           |  |
| Ingress Protection                                   |                                                                           |                                                                                                                                                                                                |  |
| Dust                                                 | IEC 60529                                                                 | per IEC 60529                                                                                                                                                                                  |  |
| Mechanical                                           |                                                                           |                                                                                                                                                                                                |  |
| Mechanical Shock                                     | ISO 16750-3 §4.2.2.2                                                      | (500 m·s-2; 11 ms) 10 shocks per axe Half sinusoidal pulse.<br>Continuous monitoring: offset(Vout and Vcc) at 1ms intervals,<br>zero primary current.                                          |  |
| Vibration in Temperature                             | ISO 16750-3 § 4.1.2.4<br>Test <b>IV</b> , passenger car,<br>sprung masses | 22 hours for each axis. RMS acceleration value of 96,6 m/s2.<br>Continuous monitoring: offset(Vout and Vcc) at 30ms intervals,<br>zero primary current. Temperature cycling from Tmin to Tmax. |  |
| Free Fall                                            | ISO 16750-3 § 4.3                                                         | Test direction: $\pm X$ , $\pm Y$ , $\pm Z$ axis (6 directions), one sample per<br>each axis; Drop floor: steel plate; Drop height: 1 meter.<br>Temperature:+23 °C $\pm$ 5 °C.                 |  |
| Electrical                                           |                                                                           |                                                                                                                                                                                                |  |
| Noise                                                | Littelfuse VS                                                             | Sweep from DC to 1MHZ.                                                                                                                                                                         |  |
| Power-on Time                                        | Littelfuse VS                                                             | Vdd min to 90%Vout                                                                                                                                                                             |  |
| Overvoltage                                          | ISO 16750-2 §4.3                                                          | +6V for 60s                                                                                                                                                                                    |  |
| Output Short Circuit to Supply                       | ISO16750-2 §4.10                                                          | 'VDC: 5 V; Connect all terminals to GND except for B+ terminal of connector; Connect all terminal to B+ except for GND terminal of connector.                                                  |  |
| Reverse Supply Voltage                               | ISO 16750-2 §4.7.2                                                        | -0.3V for 60s                                                                                                                                                                                  |  |
| Response Time                                        | Littelfuse VS                                                             | 90%Primary current to 90%Vout                                                                                                                                                                  |  |
|                                                      |                                                                           |                                                                                                                                                                                                |  |

Continued next page



## Validation Test Specification (continued)

| Group / Test                               | Reference                                                               | Test Condition                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|--------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Insulation and Dielectric Voltage          |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Insulation Resistance                      | ISO 16750-2 §4.12.2                                                     | Perform insulation resistance test ,then perform a CL-THC-<br>Temperature / Humidity cycle test, at last perform insulation<br>resistance test again; record the min value, test point:<br>connector wires to busbar, samples shall remain 0.5h at room<br>temperature after Composite temperature/humidity cyclic<br>test: 1000V DC, 60s                                                                                                              |  |
| Dielectric Withstand Voltage               | IEC 60664; Part 1                                                       | Perform dielectric withstand voltage test ,then perform a CL-<br>THC-Temperature / Humidity cycle test, at last perform<br>dielectric withstand voltage test again; record the max<br>value ;samples shall remain 0.5h at room temperature after<br>Composite temperature/humidity cyclic test, 'test point:<br>connector wire to busbar: 2.5 kV AC, 50Hz, 1min.                                                                                       |  |
| EMC                                        |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Bulk Current Injection (BCI)               | ISO 11452-4 Annex E.1.1,<br>Table E.1<br>GMW3097; From 1 to 400<br>MHz. | Refer to EMC Test Plan - <i>EMC-8057</i>                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Radiated Electromagnetic Immunity (ALSE)   | ISO 11452-2                                                             | Refer to EMC Test Plan - EMC-8057                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Radiated Emissions                         | CISPRR25 (2008) Table 9                                                 | Refer to EMC Test Plan - EMC-8057                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| ESD Handling                               | ISO 10605 §7                                                            | Refer to EMC Test Plan - EMC-8057                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Connector                                  |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Terminal Push-out Force                    | GMW3191:2012 §4.5.2                                                     | Apply rearward pulling force to dislodge the terminal out of the<br>header. Speed 50± 10mm/min. Record the peak force<br>required to displace the terminal 0.20 mm. Afterwards,<br>connectors conditioned by being exposed to 95% to 98% RH<br>at +40 °C for 6 hours.<br>Push / pull tests shall be performed immediately following<br>removal of the headers from the temperature/humidity<br>chamber.<br>Terminal width 0.5 mm and 0.5 mm (< 0.8 mm) |  |
| Connector to Connector Engagement<br>Force | GMW3191:2012 §4.2.8/<br>USCAR25                                         | Insert TPA into connector body at a uniform rate of $(50 \pm 10)$ mm/minute.<br>Record peak force and graph force versus distance from initial position of TPA to connector body to final engaged position.                                                                                                                                                                                                                                            |  |
| Locked Connector Disengagement<br>Force    | GMW3191:2012 §4.2.18                                                    | Pull the mated connectors apart at a rate of $(50 \pm 10)$ mm/minute. Record the force at which the connectors disengage.                                                                                                                                                                                                                                                                                                                              |  |
| Unlocked Connector Disengagement<br>Force  | GMW3191:2012 §4.2.19                                                    | Pull the mated connectors apart at a rate of $(50 \pm 10)$ mm/minute. Record the force at which the connectors disengage.                                                                                                                                                                                                                                                                                                                              |  |



# Current Sensor CH1B02xB

## Performance Parameter Definitions

## Output Voltage (Vout)

 $V_{out} = (V_{CC}/5) \times (2.5 + I_p \times S)$ 

## Primary current definition $(I_N, I_p)$



## Linearity error ( $\varepsilon_L$ )

The maximum positive or negative discrepancy with a reference straight line  $V_{out} = f(I_p)$ .

#### Vout [V]



V<sub>FS</sub>: full scope output voltage

## Offset error ( $\varepsilon_0$ )

The voltage drift of the measured sensor output  $V_{out}$  at 0A compared to the ideal value 2.5V ( $@V_c = 5V$ ) is called the total offset voltage error. This offset error can be attributed to the electrical offset, magnetic offset and related drift over temperature.

$$\varepsilon_0 = \pm \frac{V_{out} - V_0}{V_{FS}} \times 100\%$$

## Sensitivity error ( $\varepsilon_s$ )

The sensor sensitivity error is the drift of sensor's ideal sensitivity.

$$\varepsilon_S = \pm \frac{S - S_{th}}{S_{th}} \times 100\%$$

Sth: theory sensitivity

## Power-on time $(t_{po})$

The Power-on time is the duration from Uc (min.) to 90% of Vout.



## Response time $(t_r)$

The time between the primary current signal and the output signal reaching at 90% of its final value.



## Typical, minimum and maximum values

Typical, minimum, and maximum values are determined during initial product characterization.

Typical values representing the normal of statistical  $\pm 1\sigma$  interval (68.27% probability). Minimum and maximum values representing the Gaussian distribution boundaries of the  $\pm 3\sigma$  interval (99.73% probability).



# Current Sensor CH1B02xB

#### Contact

Custom electrical and environmental specifications can be designed to meet any need, please contact Littelfuse Engineering for details.

| Website:           | www.littelfuse.com                   |
|--------------------|--------------------------------------|
| Sales Support:     | ALL Autosensors Sales@littelfuse.com |
| Technical Support: | ALL Autosensors Tech@littelfuse.com  |

**Disclaimer Notice** - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at <a href="https://www.littelfuse.com/legal/disclaimers/product-disclaimer">https://www.littelfuse.com/legal/disclaimers/product-disclaimer</a>.

Information provided by Littelfuse is believed to be accurate and reliable.

All rights reserved. Trademarks and registered trademarks are the property of their respective owners.

Littelfuse products are designed for specific applications and should not be used for any purpose (including, without limitation, automotive applications) not expressly set forth in applicable Littelfuse product documentation. Warranties granted by Littelfuse shall be deemed void for products used for any purpose not expressly set forth in applicable Littelfuse product documentation. Littelfuse shall not be liable for any claims or damages arising out of products used in applications not expressly intended by Littelfuse as set forth in applicable Littelfuse product documentation.

Document version: Preliminary Datasheet 1.5 Date of print: 13MAR2025

