

Data Sheet Issue:- 2

Rectifier Diode Type W0428##250-320

Development Type No.: WX171##250-320

Absolute Maximum Ratings

	VOLTAGE RATINGS	MAXIMUM LIMITS	UNITS
Vrrm	Repetitive peak reverse voltage, (note 1)	2500-3200	V
Vrsm	Non-repetitive peak reverse voltage, (note 1)	2600-3300	V

	OTHER RATINGS	MAXIMUM LIMITS	UNITS
I _{F(AV)M}	Maximum average forward current, T _{case} =55°C, (note 2)	428	А
IF(AV)M	Maximum average forward current. T _{case} =70°C, (note 2)	380	А
I _{F(AV)M}	Maximum average forward current. T _{case} =100°C, (note 2)	271	А
I _{F(RMS)}	Nominal RMS forward current, T _{case} =100°C, (note 2)	425	А
IF(RMS)	Nominal RMS forward current, T _{case} =25°C, (note 2)	809	А
I _{F(d.c.)}	D.C. forward current, $T_{case} = 25^{\circ}C$	675	А
IFSM	Peak non-repetitive surge tp=10ms, Vrm=60%VRRM, (note 3)	5500	А
I _{FSM2}	Peak non-repetitive surge t _p =10ms, V _{rm} ≤10V, (note 3)	6050	А
l²t	$I^{2}t$ capacity for fusing t_{p} =10ms, V_{rm} =60% V_{RRM} , (note 3)	151×10 ³	A ² s
l²t	$I^{2}t$ capacity for fusing t_{p} =10ms, V_{rm} ≤10V, (note 3)	183×10 ³	A ² s
T _{j op}	Operating temperature range	-40 to +150	°C
T _{stg}	Storage temperature range	-40 to +150	°C

Notes:-

1) De-rating factor of 0.13% per °C is applicable for T_j below 25°C. 2) Single phase; 50Hz, 180° half-sinewave.

3) Half-sinewave, 150°C T_j initial.

Characteristics

	PARAMETER	MIN.	TYP.	MAX.	TEST CONDITIONS (Note 1)	UNITS	
Vfm	Maximum peak forward voltage	-	-	1.60	I _{TM} =900A	V	
V _{FM}	Maximum peak forward voltage	-	-	1.80	I _{TM} =1180A	V	
Vтo	Threshold voltage	-	-	0.926		V	
r⊤	Slope resistance	-	-	0.739		mΩ	
I _{RRM}	Peak reverse current	-	-	15	Rated V _{RRM}	mA	
Qrr	Recovered charge	-	1000	-		μC	
Q _{ra}	Recovered charge, 50% chord	-	700	900		μC	
Irr	Reverse recovery current	-	75	-	I⊤m=100A, t⊳=500µs, di/dt=10A/µs, Vr=50V	А	
t _{rr}	Reverse recovery time, 50% chord	-	19	-		μs	
RthJC	Thermal resistance, junction to case	-	-	0.13		K/W	
RthCK	Thermal resistance, case to heatsink	-	-	0.04		K/W	
F	Mounting torque	24	-	30		Nm	
Wt		-	175	-	Outline E	1	
	Weight	-	250	-	Outline F	g	

Notes:-

1) Unless otherwise indicated $T_j=150^{\circ}C$.

Notes on Ratings and Characteristics

1.0 Voltage Grade Table

Voltage Grade	V _{RRM} V	V _{RSM} V	V _R DC V
25	2500	2600	1500
28	2800	2900	1650
32	3200	3300	1850

2.0 Extension of Voltage Grades

This report is applicable to other voltage grades when supply has been agreed by Sales/Production.

3.0 De-rating Factor

A blocking voltage de-rating factor of 0.13%/°C is applicable to this device for T_j below 25°C.

4.0 Snubber Components

When selecting snubber components, care must be taken not to use excessively large values of snubber capacitor or excessively small values of snubber resistor. Such excessive component values may lead to device damage due to the large resultant values of snubber discharge current. If required, please consult the factory for assistance.

and:

 $W_{AV} = rac{\Delta T}{R_{th}}$

 $\Delta T = T_{j \max} - T_K$

5.0 Computer Modelling Parameters

5.1 Device Dissipation Calculations

$$I_{AV} = \frac{-V_{T0} + \sqrt{V_{T0}^{2} + 4 \cdot ff^{2} \cdot r_{T} \cdot W_{AV}}}{2 \cdot ff^{2} \cdot r_{T}}$$

Where V_{T0}=0.926V, r_T=0.739mΩ,

 R_{th} = Supplementary thermal impedance, see table below and

ff = Form factor, see table below.

Supplementary Thermal Impedance						
Conduction Angle 6 phase (60°) 3 phase (120°) ¹ / ₂ wave (180°) d.c.						
Square wave	0.174	0.153	0.143	0.130		
Sine wave	0.172	0.153	0.149			

Form Factors					
Conduction Angle 6 phase (60°) 3 phase (120°) ¹ / ₂ wave (180°) d.c.					
Square wave	2.449	1.732	1.414	1	
Sine wave	2.778	1.879	1.57		

5.2 Calculating V_F using ABCD Coefficients

The on-state characteristic I_F vs. V_F, on page 6 is represented in two ways;

- (i) the well established V_{T0} and r_T tangent used for rating purposes and
- (ii) a set of constants A, B, C, D, forming the coefficients of the representative equation for V_F in terms of I_F given below:

$$V_F = A + B \cdot \ln(I_F) + C \cdot I_F + D \cdot \sqrt{I_F}$$

The constants, derived by curve fitting software, are given below for both hot and cold characteristics. The resulting values for V_F agree with the true device characteristic over a current range, which is limited to that plotted.

25°C Coefficients		150°C Coefficients	
А	0.7795642	А	0.6340984
В	0.04590695	В	0.04112559
С	4.64903×10 ⁻⁴	С	5.72979×10 ⁻⁴
D	2.19035×10 ⁻³	D	5.790022×10 ⁻³

6.0 Reverse recovery ratings

(i) Q_{ra} is based on 50% I_{rm} chord as shown in Fig. 1

Fig. 1

(ii) Q_{rr} is based on a 150µs integration time i.e.

$$Q_{rr} = \int_{0}^{150\mu s} i_{rr}.dt$$

(iii)

$$K Factor = \frac{t_1}{t_2}$$

<u>Curves</u>

Figure 1 - Forward characteristics of Limit device

1000A

500A

200A 100A

1000

Figure 5 – Peak reverse recovery current, Irm

Figure 6 – Maximum recovery time, trr (50% chord)

Figure 7 – Forward current vs. Power dissipation

Figure 8 – Forward current vs. Heatsink temperature

Figure 9 – Transient thermal resistance

Outline Drawing & Ordering Information

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.