

Agency Approvals

Agency	Agency File Number
74	E230531

Maximum Ratings and Thermal Characteristics ($T_{*} = 25 \text{ }^{\circ}\text{C}$ unless otherwise noted)

A I I I			
Parameter	Symbol	Value	Unit
Peak Pulse Power Dissipation at $T_A = 25 \text{ °C}$ by 10/1000 μ s(Note 1)	P _{PPM}	200	W
Power Dissipation On Infinite Heat Sink at $T_1 = 50 ^{\circ}C$	P _D	1.7	W
Operating and Storage Temperature Range	$T_{J,}T_{STG}$	-55 to 150	°C
Thermal Resistance Junction to Ambient	R _{øja}	200	°C/W
Thermal Resistance Junction to Lead	R _{ejl}	60	°C/W
Notos			

1. Non-repetitive current pulse, per Fig. 5 and derated above T_{J} (initial) = 25 °C per Fig. 3.

Description

SMF Ultra Low Voltage Series is designed specifically to protect sensitive electronic equipment from voltage transients induced by lightning and other transient voltage events.

Features

- 200 W peak pulse power capability at 10/1000 µs waveform, repetition rate (duty cycles):0.01 %
- SOD-123FL low profile package: maximum height of 1.08 mm
- For surface mounted applications to optimize board space
- Typical failure mode is short from over-specified voltage or current
- Whisker test is conducted based on JEDEC JESD201A per its table 4a and 4c pass class 1 and class 2
- IEC 61000-4-2 ESD 30 kV(Air), 30 kV (Contact)

- Low dynamic resistance
- V_{BR} @ T_J = V_{BR}@25 °C x (1+αT x (T_J 25))(αT:Temperature Coefficient, typical value is 0.1 %)
- Recognized compound meeting flammability rating UL94 V-0
- Halogen free and RoHS compliant
- Pb-free E3 means 2nd level interconnect is Pb-free and the terminal finish material is tin(Sn) (IPC/JEDEC J-STD-609A.01)
- Recognized to UL 497B as an Isolated Loop Circuit Protector

Applications

The component is ideal for the protection of portable components/ hard drives, notebooks, $V_{\rm cc}$ busses, POS terminal, SSDs, power supplies, monitors, and vulnerable circuit used in other consumer applications.

Electrical Characteristics (T_a = 25 °C unless otherwise noted)

Part Number	Marking Code	Break Voltag (Volts	geV _{BR}	Test Current I. (mA)	Reverse Stand off Voltage	Maximum Reverse Leakage @ V _R	Maximum Peak Pulse Current (10/1000 μs)	Maximum Clamping Voltage @l _{pp} (10/1000 μs)	Maximum Peak Pulse Current (8/20 µs)	Maximum Clamping Voltage @l _{pp} (8/20 μs)	Volta	ward age V _F nA (V)	Agency Approval
		Min Max	ι _τ (Π.Α.)	V _R (V)	Ι _R (μΑ)	I _{pp} (A)	V _c (V)		Min	Max			
SMF2.5	25	2.6	3.3	40	2.5	0.5	38.5	5.2	117.0	7.7	25	38	-
SMF3.0	30	3.1	3.7	40	3.0	0.5	34.5	5.8	139.2	8.6	20	35	-
SMF3.3	33	3.4	4.3	10	3.3	0.5	30.0	6.8	120.0	10.0	7	16	Х
SMF4.0	40	4.3	4.8	40	4.0	0.5	26.7	7.5	108.0	11.1	7	16	Х

Notes:

1. Surge current waveform per 10/1000 µs exponential wave and derated per Fig.3.

2. Surge current waveform per 8/20 µs exponential wave and derated per Fig.3.

I-V Curve Characteristics

$P_{_{PPM}}$ Peak Pulse Power Dissipation ($I_{_{PP}} \times V_{_{C}}$) – Max power dissipation

- $\textbf{V}_{\mbox{\tiny R}}$ ~ Stand-off Voltage Maximum voltage that can be applied to the TVS without operation
- V_{BR} Breakdown Voltage -- Maximum voltage that flows though the TVS at a specified test current (I,)
- $\label{eq:Vc} \textbf{V}_{c} \quad \textbf{Clamping Voltage} \text{Peak voltage measured across the TVS at a} \\ \text{specified I}_{_{PPM}} \text{ (peak impulse current)} \\ \end{cases}$
- I Reverse Leakage Current -- Current measured at V
- V_F Forward Voltage Drop for Uni-directional

Ratings and Characteristic Curves ($T_A = 25$ °C unless otherwise noted)

Figure 1 - Typical Transient Thermal Impedance

Figure 3 - Peak Pulse Power Derating Curve

Figure 2 - Peak Pulse Power Rating Curve

Figure 4 - Capacitance vs. Reverse Bias

Soldering Parameters

Reflow Cond	lition	Lead–free assembly			
	- Temperature Min (T _{s(min)})	150 °C			
Pre Heat	- Temperature Max (T _{s(max)})	200 °C			
	- Time (min to max) (t _s)	60 - 120 seconds			
Average Ran Peak	np Up Rate (Liquidus Temp (T_L) to	3 °C/second max			
$T_{S(max)}$ to T_{L} -	Ramp-up Rate	3 °C/second max			
5.0	- Temperature (T _L) (Liquidus)	217 °C			
Reflow	-Time (min to max) (t _L)	60 – 150 seconds			
Peak Temper	ature (T _P)	260 ^{+0/-5} °C			
Time Within	5°C of Actual Peak Temperature (t_,)	30 seconds max			
Ramp-down	Rate	6 °C/second max			
Time 2 5°C t	o Peak Temperature (T _p)	8 minutes max			
Do Not Exce	ed	260 °C			

Physical Specifications

Polarity	Color band denotes cathode except bipolar
Terminal	Matte tin-plated leads, solderable per JESD22-B102

Environmental Specifications

High Temp Voltage Blocking (HTRB) Biased Temp & Humidity (H3TRB)	100 % DC reverse voltage rated 150 °C, 1008 hours JEDEC, JESD22-A-108 80 % breakdown voltage (+85 °C) 85 %RH, 1008 hours JEDEC, JESD22-A-101
Unbiased Highly Accelerated Stress Test (UHAST)	96 hours at T _A = 130 °C/85 %RH. JEDEC, JESD22-A-118
Temp Cycling (TC)	-55 °C to +150 °C, 15 min. dwell, 1000 cycles. JEDEC, JESD22-A104
Moisture Sensitivity Level (MSL)	85 %RH, +85 °C, 168 hours, 3 reflow cycles (+260 °C Peak). JEDEC, JEDEC-J-STD-020, Level 1
Resistance to Solder Heat (RSH)	+260 °C, 30 seconds JEDEC, JEDEC JESD22-A-111

Mounting Pad Layout

Part Numbering System

Dimensions - SOD-123FL Package

Dimensions	Millin	neters	Inches		
Dimensions	Min	Max	Min	Max	
А	2.70	3.10	0.106	0.122	
В	3.50	3.90	0.138	0.154	
С	0.85	1.05	0.033	0.041	
D	1.70	2.00	0.067	0.079	
E	0.43	0.83	0.017	0.033	
F	0.10	0.25	0.004	0.010	
G	0.00	0.10	0.000	0.004	
Н	0.90	1.08	0.035	0.043	
I	0.00	0.20	0.000	0.008	
J	0.40	0.60	0.016	0.024	

Part Marking System

Packaging Options

Part number	Component Package	Quantity	Packaging Option	Packaging Specification
SMFxx	SOD-123FL	3000	Tape & Reel – 8 mm tape/7" reel	EIA RS-481

Tape and Reel Specification

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at http://www.littelfuse.com/disclaimer-electronics.

